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Abstract. Using a path integral approach an explicit expression is obtained for the 
two-particle probability of a polymer chain for which both the elastic energy of stretching 
and the elastic energy of bending are taken into account. The end-to-end distribution 
function is extracted from this result. We point out that because of the elastic energy of 
bending the probability is non-Markoffian and, thus, in this case the two-particle probability 
is not identical in form to the end-to-end distribution. Moreover, when calculating averages 
over the length of the polymer it is necessary to use the two-particle probability rather than 
the end-to-end distribution. As an example-we calculate the particle scattering factor for a 
dilute solution of polymers. 

1. Introduction 

The chain model has been used for simulating the configurational behaviour of 
polymers. In particular, the continuous chain model has the advantage that one can 
employ the methods of functional integration as has been shown in a series of papers by 
Edwards (see, e.g., Edwards 1965, 1969, 1974). Early work on the theory of polymer 
distribution functions includes that of Daniels (1952) and Hermans and Ullman (1952). 
A discussion of models employed for simulating polymers together with the associated 
probabilities is given by Freed (1971) and by Yamakawa and Fujii (1973, 1974). 

In the present work we deal with the configurational probabilities of molecular 
chains in a state of thermodynamic equilibrium. For a chain of molecular units 0, 1, 
2 , .  . . , N the probability of finding a particular configuration of the molecules in the 
vicinity of the points xo, xl, xz, . . . , xN is given by 

where U = U(xo, xl, . . . , xN)  is the intermolecular potential energy of the chain and 
p = (kT) - ’ .  Probability (1.1) contains more thermodynamic information than is usually 
needed for calculations. Thus, for example, a two-point reduced distribution 

i # j > k  

suffices in many cases of interest. The frequently used end-to-end distribution (e.g., see 
Flory 1969) is obtained for j = 0 and k = N. 
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In this paper we obtain the two-particle distribution for a continuous polymer chain 
model for which both the elastic energy of stretching and the elastic energy of bending 
are taken into account. In the discrete counterpart of the model the stretching 
corresponds to nearest-neighbour linear interactions and the bending is associated with 
first- and second-nearest-neighbour linear interactions. In our approach we show how 
the picture of a continuous chain employed by Edwards (1965) arises from statistical 
mechanical principles when the number of particles in the chain increases indefinitely. 
In this case the label of a point in the chain is the contour length s of the polymer 
segment from one of its ends to the point in question. In the continuous model the 
probability (1.2) goes over to P&, x’) dx dr’. 

iish to consider, the potential energy takes the form: (discrete case) For the case we 

u[xj 

(continuous case) 

( 1 . 3 ~ )  

(1.36) 

The first term in ( 1 . 3 ~ )  and (1.36) represents the elastic energy of stretching and the 
second the elastic energy of bending (torsion). The coefficient a = 3/(@), where 1 is the 
mean bond length (see Edwards and Freed 1970). 

When y = 0 the two-point probability evaluation is particularly simple and is given 

( 1 . 4 ~ )  
by 

PS&, x’) dr dx’= V-’G(xsIx’s) dx dx‘, 
where 

(1.4b) 

With appropriate interpretation of 1s -s’I, G is the conditional probability distribution 
for a free Brownian particle. The track of a Brownian particle simulates a linear 
polymer (Kuhn 1934). The probability G is Markoffian, i.e. 

G (xs lx’s ’) = I G (xs Ix”s”)G (XI’S ”(x’s ’) dr ”. (1.5) 

Property (1.5) enables one to consider the polymer segments from s to s‘ independently 
of the exterior segments of the polymer chain. The interesting feature when one 
includes the energy of bending is that the Markofficity of the chain is destroyed and, 
therefore, the end-to-end probability of a segment of the polymer can no longer be 
considered independent of the polymer as a whole. 

The case of potential energy (1.36) (bending included) was considered by Saito eta1 
(1 967) who approached the problem by solving an approximate differential equation in 
polar coordinates. Also Edwards and Freed (1970) used a differential equation for the 
probability using phase space variables. In the present work we carry out a functional 
integral evaluation of the probability and produce an explicit expression. We apply our 
result to the problem of light scattering from weak solutions of polymers. 
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2. Path integral evaluation 

To enable ourselves to proceed with the path integral evaluation of a two-particle 
(two-point) distribution of a continuous chain of particles we work as follows: we 
consider initially the discrete case and then proceed to the limit of continuality. Lets, s’ 
be the positions of two particles in the chain and let j s ,  j s .  be the corresponding indices 
labelling the particles at the positions s, s’. Then the two-particle distribution takes the 
form: 

P y ( x ,  x’) dr dr’ 
N 

( 2 . 1 ~ )  1 =-(I exp(-pU)a(x -x j , )a (x ’ -x js , )  n dxj) d~ dr’ 

where Z(N)  is the configurational partition function for the system, given by: 

j = O  zW) 

N 

j=O 
z(N) = e x p ( - p ~ )  n &j. (2.16) 

Now, if we pass to the limit of the continuous chain, both Z(N) and the multiple 
integral P::) go to zero. Of course, their ratio goes to something between 0 and 1. We 
can extract the limit by multiplying both the integral (numerator) and Z(N)  
(denominator) through by the factor [I-I:;’ a p / 2 ~ ( A s ~ ) ~ ] ~ / ’  thus making out of the 
numerator and denominator proper path integrals. 

We have for the two-particle distribution: 

where 

and where 9 [ x i ]  is the path differential: 

(2.2b) 

(2.2c) 

The appearance of the factor IIKi’   AS^)-^ in (2.2a, b) in addition to the normalizing 
factor of the usual path differential is due to the three-particle interaction in the 
potential energy, essentially against which the averaging is done. In contrast, in the 
Feynman path integral the averaging relates to the kinetic energy, whereas here we 
have what would correspond to something proportional to the square of the accelera- 
tion. 

We proceed to the evaluation of our path integral by making the transformation 
from the variables X I ,  x2, . . . , xN to UO, U I ,  . . . , uN-l through 

X j + l  -Xj U. =- 
I Asj * 

The Jacobian of the transformation is 
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Upon introducing the transformation (2.3) into (2 .2a,b)  we are led in the limit of 
continuality to the following expression for our two-point distribution: 

Pss.(x, x’)= Z;’ 1 drO duo 1 L 

exp( -$lo ( ~ ( s ) + a o 2 ( s ) )  ds) 
U (0) =ug. 
u ( L ) = o  

where 2, is now the limiting value of (2.26) when N + CO, i.e 

The path integrals appearing in (2.4a, 6) are now of known forms. The one in (2.46) 
is that for an harmonic oscillator, while the one in ( 2 . 4 ~ )  by a Fourier decomposition of 
the 6 functions involved becomes that for a forced harmonic oscillator. These path 
integrals, when s stands for time, are path integrals in velocity space. For transforma- 
tions of such path integrals see Papadopoulos (1967, 1968). We have: 

Pss,(x, x’) = Z; ’ (~T) -~  dq dq’  dro duo exprig. (x -xo) +iq’ . (x’ -xO)] 

x I exp( - p IoL [tri,z(s”) + tau2(s” )  + ip-’(qe (s - sf’) + qte (s’ - S I ’ ) )  

X o(s”)] ds”)9[u] (2.5) 

I 

where O(s) is the Heaviside step function. 
Using, appropriately, the expression for the propagator for a forced harmonic 

oscillator (see Feynman and Hibbs 1965, Papadopoulos 1969) and the expression for 
the propagator of a simple harmonic oscillator (2.5) becomes: 

P&, x’) = (5 dro duo e ~ p ( - p S ~ ) ) - ’ ( 2 ~ ) - ~ 5  dq dq‘ dro duo exp(-pSl). (2.6) 
In this expression 

So = $y51uz coth(OL), 
and 

( 2 . 7 ~ )  

SI =~r51u~coth(RL)+i(~51)-’uo.(qA(s)+q’A(s’))+(yR 3 @ 2 ) -1 [q2B(s )+qr2B(s ’ )  

+4 .41(c(s, s’)e(s - S)  + c(s’, s)e(s - S’NI, (2.7b) 
where 

A ( s )  =[1 -cosh(fls)] coth(flL)+sinh(fls), ( 2 . 7 ~ )  

(2.7d) B ( s )  = ills - i[ 1 - cosh(Rs)12 coth(51L) - [l - cosh(fls)] sinh(Qs), 

C(s, s ’) = 51s - [ 1 - cosh(51s)][ 1 - cosh(Rs’)] coth(51L) - sinh(51s) 

-[1 -cosh(fls)] sinh(51s‘) (2.7e) 

and 

51 = ( a / y )  1’2 
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In proceeding with this result it is convenient to assume, say, s <s’ but clearly from 
the symmetry of the problem our final answer cannot depend on an interchange of s and 
s’. Thus performing the remaining integrals which are straightforward one finds 

yR3p (x - x ’ ) ~ )  ( 2 . 8 ~ )  
2 0  (s,s’,L ) 

where 

D(s,  s’,L)=Rls - s ’ I - { ~ + c o s ~ [ ~ ~ ( s + s ’ ) ] - c o s ~ [ ~ ~ ( s  -sf)] 

-cosh[R(s +s’)] cosh[ll(s -sf)]} tanh(RL) 

+sinh[R(s +s’)]-sinh(flls -s’l)-sinh[R(s +s’)] cosh(lR1s --s’/). (2.8b) 

The expression (2.86) can be written in a somewhat more compact form but, rather 
we chose to demonstrate that s and s‘ can be made to appear only as a sum and 
difference in D(s, s’, L ) .  We also emphasize that this two-point probability depends on 
the entire length L of the chain. Here the dependence on s,s ’  and on L is a 
manifestation of the non-Markofficity of the chain when the elastic energy of bending is 
included in the interatomic potential. This is in contrast to the situation for which only 
the stretching elastic energy is taken into account in the interatomic potential. In this 
latter case (cf equation (1.46)) the two-point probability depends only on the difference 
of the arc lengths 1s -S I / .  In fact, in this instance the two-point probability correspond- 
ing to an integral segment of the chain has the same form as the end-to-end probability. 

We can find the end-to-end probability corresponding to equations (2.8a, 6 )  by 
letting s + 0, SI+ L and noting that D(0,  L,  L )  = RL - tanh(RL). Then 

ra3p (x2 -x0l2 
2[RL - tanh(RL)] 

Y f13P ) 3 / 2  expj  - 
1 

Por(xo’ x r ) = d 2 ~ [ R L  -tanh(RL)] 

From this result one can obtain, for example, the end-to-end moments 

(x2) = 3[flL - tanh(RL)]/(yR3P)? 

and 

((x’)’) = 15[RL - tanh(RL)]2/(yf13P)2. 

( 2 . 9 ~ )  

(2.96) 

(2.9) agrees with the corresponding result of Freed (1971). However, the new result 
here is the joint probability distribution P&, x’) for any two points of the chain. It is 
precisely this distribution that has to be employed for light scattering calculations. This 
is done in the next section. In contrast Saito et a1 (1967) and Freed (1971) essentially 
make use of the end-to-end distribution for trimmed away chains, a thing not applicable 
in the present case. 

3. Particle scattering factor 

With the aid of the two-point probability one can find the particle scattering factor P ( p )  
which gives the angular distribution of the intensity of electromagnetic radiation 
scattered from a solution of polymers. If ko and k are the propagation vectors for the 
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incident and scattered beams, one has for a dilute solution of polymers, that 
L L  

P ( p )  = L-‘ / ds / ds’ I Pss,(x, x’) exp[ip. (x -x’)] dx dx’. (3.1) 
0 0 

where p = (k -ko(  (see Flory 1969). In the case where only the elastic energy of 
stretching is taken into account one uses equation (1.4) in (3.1) and finds 

(3.2) 

Likewise, when both stretching and bending elastic energies are taken into account, 
one uses equation (2.8a) in (3.1) and finds 

.L .L 

where D(s, s’, L) is given by (2.8b). This expression can be evaluated numerically in 
terms of the quantities (uPL and 7 = (y /L) / (aL) .  The results are shown in figure 1 for 
several values of 77. It is evident from this figure that the bending can make a 
considerable contribution to the scattering. 

As a final remark, by taking y + 0, the ratio D / ( y a 3 )  goes to 1s -s’I and in this limit 
the double integral in (3.3) can be evaluated, leading again to the Debye form (3.2) for 
P(P) .  

0 0  10 2 0  30 to5 

Figure 1. The particle scattering factor P ( p )  against p for different values of 7. The curves 
correspond to the same asymptotic end-to-end distance LCi/(yn3P) = L./(ap). The energy 
per bond associated with these modes is about lo-* eV and typical bond lengths are 1-2 A. 
Thus, takingp-’ - lo-* eV at room temperature and letting L = 1 km we used apL = lo4 
to obtain these plots. The case q = 0.0 corresponds to stretching only. 
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